On a Conjecture for a Higher-Order Rational Difference Equation
نویسندگان
چکیده
منابع مشابه
STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM
In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.
متن کاملGlobal Dynamics for a Higher Order Rational Difference Equation
In this paper, some properties of all positive solutions are considered for a higher order rational difference equation, mainly for the existence of eventual prime period two solutions, the existence and asymptotic behavior of nonoscillatory solutions and the global asymptotic stability of its equilibria. Our results show that a positive equilibrium point of this equation is a global attractor ...
متن کاملGlobal Behavior of a Higher-order Rational Difference Equation
We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that...
متن کاملDynamics and behavior of a higher order rational difference equation
We study the global result, boundedness, and periodicity of solutions of the difference equation xn+1 = a+ bxn−l + cxn−k dxn−l + exn−k , n = 0, 1, . . . , where the parameters a, b, c, d, and e are positive real numbers and the initial conditions x−t, x−t+1, . . . , x−1 and x0 are positive real numbers where t = max{l, k}, l 6= k. c ©2016 All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2009
ISSN: 1687-1839,1687-1847
DOI: 10.1155/2009/394635